Unsteady granular flows in a rotating tumbler.

نویسندگان

  • Nicholas A Pohlman
  • Julio M Ottino
  • Richard M Lueptow
چکیده

The characteristics of steady granular flow in quasi-two-dimensional rotating tumblers have been thoroughly investigated and are fairly well understood. However, unsteady time-varying flow has not been studied in detail. The linear response of granular flow in quasi-two-dimensional rotating tumblers is presented for periodic forcing protocols via sinusoidal variation in the rotational speed of the tumbler and for step changes in rotational speed. Variations in the tumbler radius, particle size, and forcing frequency are explored. Similarities to steady flow include the fastest flow occurring at the free surface of the flowing layer and an instantaneous approximately linear velocity profile through the depth. The flowing layer depth varies by 2-5 particle diameters between minimum and maximum rotation rates. However, unsteady forcing also causes the flow to exhibit dynamic properties. For periodic rotational speeds, the phase lag of the flowing layer depth increases linearly with increasing input forcing frequency up to nearly 2.0 rad over 0-20 cycles per tumbler revolution. The amplitude responses of the velocity and shear rate show a resonance behavior unique to the system level parameters. The phase lag of all flow properties appears to be related to the number of particle contacts from the edge of the rotating tumbler. Characterization via step changes in rotational speed shows dynamic properties of overshoot (up to 35%) and rise times on the order of 0.2-0.7 s. The results suggest that the unsteady granular flow analysis may be beneficial for characterizing the "flowability" and "rheology" of granular materials based on particle size, moisture content, or other properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Granular Avalanches

Granular avalanches are one of the fundamental grain transport mechanisms in our natural environment and in many industrial grain-processing flows. In recent years significant progress has been made in describing the flow of granular avalanches over complex rigid topography. Often the fluid-like granular avalanches flow over a region of solid-like grains at which there may be erosion or deposit...

متن کامل

Chaotic mixing via streamline jumping in quasi-two-dimensional tumbled granular flows.

We study, numerically and analytically, the singular limit of a vanishing flowing layer in tumbled granular flows in quasi-two-dimensional rotating containers. The limiting behavior is found to be identical under the two versions of the kinematic continuum model of such flows, and the transition to the limiting dynamics is analyzed in detail. In particular, we formulate the no-shear-layer dynam...

متن کامل

Transition to centrifuging granular flow in rotating tumblers: a modified Froude number

Centrifuging of granular material in a partially filled rotating circular tumbler occurs when particles are flung outward to form a ring of particles at the periphery of the tumbler rotating as a solid body. The critical rotation speed for centrifuging was studied experimentally in a quasi-two-dimensional tumbler as a function of particle diameter, tumbler fill fraction and interstitial fluid. ...

متن کامل

An experimental study of the flowing granular layer in a rotating tumbler

Granular flow in a rotating tumbler is of theoretical and industrial significance. However, in spite of its relative simplicity, little is known about the dynamics of the top flowing layer. Here we present an experimental study of the velocity field within the fluidized layer of monodisperse particles in a quasi-2D ~two-dimensional! rotating tumbler in the rolling flow regime using particle tra...

متن کامل

Effect of interstitial fluid on a granular flowing layer

A dominant aspect of granular flows is flow in thin surface layers. While an understanding of the dynamics of dry granular surface flow has begun to emerge, the case of flow when air is completely replaced by a liquid is largely unexplored. Experiments were performed using particle tracking velocimetry (PTV) in a quasitwo-dimensional rotating tumbler to measure the velocity field within the flo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009